
 

 

 
 
 
 



 

1.3.1. Introduction 
 
The Artemis/Advancy report1 states that "the investments in software technologies should be 
on at least an equal footing with hardware technologies, considering the expected growth at 
the higher level of the value chain (Systems of Systems, applications and solutions)". According 
to the same report, embedded software and software engineering tools are part of the six 
technology domains needed for embedded intelligence. Embedded intelligence means 
incorporating AI algorithms (“classic” or ML ones) in devices or components to give them the 
ability to reflect on their own state (e.g. operational performance, usage load, environment), 
execute tasks independently, adjust to novel circumstances, and make data-driven decisions 
without human input. Such devices will operate in a robust and resilient way, e.g. 
independent of internet connectivity and are the necessary step towards the next level of 
digitalisation and sustainability. In this context, embedded intelligence supports the green 
deal initiative, as one of the tools for enhancing sustainability. 
 
 

 
 
Figure 1.3.1  - Positioning of the Embedded Software and Beyond Chapter in the ECS-SRIA 

Figure 1.3.1 illustrates the role and positioning of the Embedded Software and Beyond 
Chapter in the ECS- SRIA. The Chapter on Components Modules and System Integration 
focuses on functional hardware components and systems that compose the embedded and 
cyber-physical systems (CPS), considered in this Chapter. While the System of Systems (SoS) 
Chapter is based on independent, fully functional systems, products and services (which are 
also discussed in this Chapter), they are also the constituents of SoS-based solutions. The 
Architecture and Design: Methods and Tools Chapter examines engineering processes, 
methods, and tools, while this Chapter focuses more on the technology stack of Embedded 
Software and Beyond. For the discussion on safe, trustworthy, and explainable AI in the 
context of embedded intelligence, this Chapter is also linked to Quality, Reliability, Safety 
and Cybersecurity (Chapter 2.4). 
 

 

1 Advancy, 2019:  Embedded Intelligence: Trends and Challenges, A study by Advancy, commissioned by 
ARTEMIS Industry Association. March 2019.  Downloadable from: https://www.inside-
association.eu/publications 



 

This Chapter is called Embedded Software and Beyond to stress that embedded software is 
more than “just software”: it is a key component of any system’s embedded intelligence, it 
enables systems to act on external events, and it enables inter-system communication. 
Most importantly, Embedded software empowers Embedded and cyber-physical systems 
(ECPS) to play a key role in solutions for digitalisation in almost every application domain (cf. 
Chapters 3.1-3.6). From a functional perspective, the role of Embedded Software is becoming 
increasingly dominant because of the new software-enabled functionalities ECPS (e.g. cars, 
trains, airplanes and health equipment) need to provide (including aspects as security, privacy 
and autonomy). In these systems, most of the innovation comes from software, nowadays. 
ECPS also form the backbone of SoS (e.g. smart cities, air traffic management), providing 
required interconnection and interoperability. Owing to all these factors, ECPS are an 
irreplaceable part of the strive towards digitalisation of our society. 
At the same time, ECPS need to exhibit required quality properties (e.g. safety, security, 
reliability, dependability, sustainability, and, ultimately, trustworthiness). Furthermore, due 
to their close integration with the physical world, ECPS must consider the dynamic and 
evolving aspects of their environment to provide deterministic, high-performance, and low-
power computing, especially when processing intelligent algorithms. Increasingly, software 
applications will run as services on distributed SoS involving heterogeneous devices (e.g: 
servers, edge devices) and networks, with a diversity of resource restrictions. In addition, it is 
required from ECPS that their functionalities and hardware capabilities evolve and adapt 
during their lifecycles – e.g.  through updates of software or hardware in the field and/or by 
learning. Building these systems and guaranteeing their previously mentioned quality 
properties, along with supporting their long lifetime and certification, requires innovative 
technologies in the areas of modelling, software engineering, model-based design, 
verification and validation (V&V) technologies, and virtual engineering. These advances need 
to enable engineering of high-quality, certifiable ECPS that can be produced (cost-)effectively 
(cf. Chapter 2.3, Architecture and Design: Methods and Tools). 
 

1.3.2. Scope 
 
Common challenges in embedded software and its engineering for ECPS include: 

• Interoperability. 

• Complexity of requirements and code (safety, security, performance). 

• Quality (dependability, sustainability, performance, trustworthiness). 

• Lifecycle (maintainability, extendibility). 

• Efficiency, effectiveness, and sustainability of software development. 

• Adaptability to, and the dynamic environment of ECPS. 

• Maintenance, integration, rejuvenation of legacy software solutions. 
 
To enable ECPS functionalities and their required level of interoperability, the engineering 
process will be progressively automated and will need to be integrated in advanced SoS 
engineering covering the whole product during its lifetime. Besides enabling new 
functionalities and their interoperability, it will need to cover non-functional requirements 
(safety, security, run-time performance, reliability, dependability, sustainability, and, 
ultimately, trustworthiness) visible to end users of ECPS, and to also satisfy quality 
requirements important to engineers of the systems (e.g. evolution, maintenance). This 



 

requires innovative technologies that can be adapted to the specific requirements of ECPS 
and, subsequently, SoS. 
 
Further complexity will be imposed by the introduction of Artificial Intelligence (AI), machine-
to-machine (M2M) interaction, new business models, and monetisation at the edge. This 
provides opportunities for enhancing new engineering techniques like AI for SW engineering, 
and SW engineering for AI. Future software solutions in ECPS will solely depend on new 
software engineering tools and engineering processes (e.g. quality assurance, Verification and 
Validation (V&V) techniques and methods on all levels of individual IoT and in the SoS 
domain).  
 
Producing industrial software, and embedded software in particular, is not merely a matter 
of writing code: to be of sufficient quality, it also requires a strong scientific foundation to 
assure correct behaviour under all circumstances. Modern software used in products such as 
cars, airplanes, robots, banks, healthcare systems, and the public services comprises millions 
of lines of code. To produce this type of software, many challenges have to be overcome. 
Even though software in ECPS impacts everyone everywhere, the effort required to make it 
reliable, maintainable and usable for longer periods is routinely underestimated. As a result, 
every day there are news articles about expensive software bugs and over-budget or failed 
software development projects. Also, big challenges with correctness and quality properties 
of software exist, as human well-being, economic prosperity, and the environment depend 
on it. There is a need to guarantee that software is maintainable and usable for decades to 
come, and there is a need to construct it efficiently, effectively and sustainably. Difficulties 
further increase when legacy systems are considered: information and communications 
technology (ICT) systems contain crucial legacy components at least 30 years old, which 
makes maintenance difficult, expensive, and sometimes even impossible. 
 
The scope of this Chapter is research that facilitates engineering of embedded software used 
for ECPS, enabling digitalisation through the feasible and economically accountable building 
of SoS with necessary quality. It considers: 

• Challenges that arise as new applications of ECPS emerge. 

• Continuous integration, delivery and deployment of products and processes. 

• Engineering and management of ECPS during their entire lifecycle, including 
sustainability requirements. 

 



 

 

 
Figure 1.3.2 – Importance of Embedded Software for Cyber physical systems and its roles. 

 

Quantum Technologies 
 
Quantum technology has drawn a growing amount of attention in recent years. This short 
text briefly explains the three main topics of this fields. An inventory is made of the impact of 
quantum technologies on embedded software and beyond. 
 
The Three Main Topics of Quantum Technology 
Quantum computing, quantum internet and quantum sensing are the three main topics of 
quantum technology. Let’s take a look at all three. 
 
Quantum Computing Quantum computing is the most captivating of the three. In theory, 
quantum computers are able to solve some types of computations exponentially faster than 
classical computers. Shor’s algorithm to factor a number in its prime factors is often quoted 
as an example of this speedup. This opens the road to find cryptographic keys which form the 
backbone of today’s secure communication technologies. Once quantum computers become 
practical, this may well pose a threat to secure, encrypted communication. The key point here 
is that this threat requires a significantly larger quantum computer than is available now: for 
factoring a key of several thousand bits, a logical qubit register of several thousand qubits is 
required. With the current state-of-the-art, this requires millions of physical (noisy) qubits. 
Such a large quantum computer is at least 10 to 15 years away, if not more2. 
 

 

2 Preskill, J. (2018). Quantum Computing in the NISQ era and beyond. Quantum, 79. 



 

Nevertheless, quantum computing is casting its shadow ahead. And governments and 
organisations are already taking countermeasures. Several governments now require all of 
their services to prepare for the security threat quantum computing will pose. It means that 
current encryption technologies are to be upgraded to a degree that even challenges 
quantum computing. This asks for longer encryption keys and more complex encrypting and 
decrypting algorithms, requiring more resources. Research and development of efficient 
digital cryptography systems, involving hardware and software, is already ongoing and will 
play an increasingly important role as quantum computers are coming of age3. 
 
These observations lead to the conclusion that quantum computing will have an indirect 
impact on embedded software and beyond, in the next few years. It depends on the speed of 
evolution and innovation of quantum technology when quantum computing devices will leave 
the laboratory and make their introduction to the industry. For now, that appears to be a 
decade away, but vigilance on this subject is required. Europe should strive for independence 
from other nations in this area to be able to develop this technology on its own, in the light 
of the recent developments in international relations. 
 
Quantum Internet  
A quantum internet is an application of quantum networks. Quantum networks enable the 
communication of qubits. Such networks can be used to connect quantum processors to form 
more powerful quantum computers. Quantum networks can also be used to create quantum 
internet applications. One such application is the secure distribution of cryptographic keys: in 
this setup, cryptographic keys are distributed over a quantum network using entangled 
qubits, enabling the detection of eavesdropping on the communication. But quantum 
internet, just like quantum computers, are still in the research and development phase. 
Practical applications at this moment require complicated setups, often involving 
cryogenically-cooled devices, preventing wide-spread use today and in the next few years4.  
 
Quantum Sensors  
Quantum sensors are sensors which detect physical properties by using quantum effects such 
as quantum entanglement, quantum interference, and quantum state squeezing. Quantum 
sensors have been in use for quite a long time: medical magnetic resonance scanners, which 
detect the precession of atomic nuclei in a magnetic field. 
Quantum sensors are sensitive to some physical property. It is not so much the measurement 
of the physical property, but the enhanced accuracy or sensitivity to such a property that 
makes quantum sensors stand out from classical sensors. As such, the (embedded) software 
that processes the measurement of quantum sensors does not differ from software that 
processes measurements from classical sensors5.  
 

 

3 Post-Quantum Cryptography - Setting the Future Security Standards. (n.d.). Retrieved from 
https://www.nxp.com/applications/enabling-technologies/security/post-quantum-cryptography:POST-
QUANTUM-CRYPTOGRAPHY 
4 Singh, A., Dev, K., Siljak, H., Joshi, H., & Magarini, M. (2021). Quantum Internet—Applications, Functionalities, 
Enabling Technologies, Challenges, and Research Directions. IEEE Communications Surveys & Tutorials, 2218-
2247. doi:10.1109/COMST.2021.3109944 
5 Kantsepolsky, B., Aviv, I., Weitzfeld, R., & Bordo, E. (2023). Exploring Quantum Sensing Potential for Systems 
Applications. IEEE Access, 31569-31582. 



 

It appears that quantum technology will impact the communication security of embedded 
systems in the next few years. Implementations for post-quantum cryptography must be 
researched and developed to stay ahead of quantum technology developments. 
 
 

1.3.3. APPLICATION BREAKTHROUGHS 
 
Embedded software significantly improves the functionalities, features, and capabilities of 
ECPS, increasing their autonomy and efficiency, and exploiting their resources and 
computational power, as well as bringing to the field functionalities that used to be reserved 
only for data centres, or more powerful and resource-rich computing systems. Moreover, 
implementing specific functionalities in software allows for their re-use in different 
embedded applications due to software portability across different hardware platforms. 
Examples of increasing computational power of ECPS are video conferencing solutions: less 
than 20 years ago specialised hardware was still required to realise this function, with big 
screens in a dedicated set-up that could not be used for any other but a dedicated application. 
Today, video conferencing is available on every laptop and mobile phone, where the main 
functionality is implemented by software running on standard hardware. The evolution is 
pushing to the “edge” specific video conferencing functionalities, adopting dedicated and 
miniaturised hardware supported by embedded software (video, microphone, and speakers), 
thus allowing the ECS value chain to acquire a new business opportunity.  
 
Following a similar approach, it has been possible to extend the functionalities of mobile 
phones and smart watches, which today can a.o. count steps, keep track of walked routes, 
monitor health, inform users about nearby restaurants, all based on a few extra hardware 
sensors and a myriad of embedded software applications. The trend is to replace specialised 
hardware applications with software running on generic computing hardware and supported 
by application-specific hardware, such as AI accelerators, neural chips. This trend is also 
contributing to the differentiation of the value creation downstream and upstream, as 
observed in the Advancy report 6 (see Figure 1.3.3). 
 
These innovations require the following breakthroughs in the field of embedded software: 

• Increased engineering efficiency and an effective product innovation process (cf. 
Chapter 2.3 Architecture and Design: Methods and Tools). 

• Enabled adaptable systems by adaptable embedded software and machine 
reasoning. 

• Improved system integration and verification and validation. 

• Embedded software, and embedded data analytics and AI, to enable system health 
monitoring, diagnostics, preventive maintenance, and sustainability. 

• Data privacy and data integrity. 

 

6Advancy, 2019: Embedded Intelligence: Trends and Challenges, A study by Advancy, commissioned by 

ARTEMIS Industry Association. March 2019. Downloadable from: https://www.inside-
association.eu/publications 

 



 

• Model-based embedded software engineering and design as the basis for managing 
complexity in SoS (for the latter, cf. Chapter 2.3 Architecture and Design: Methods 
and Tools). 

• Improved multidisciplinary embedded software engineering and software: 
architecting/design for (systems) qualities, including reliability, trust, safety, security, 
overall system performance, installability, diagnosability, sustainability, and re-
usability (for the latter, cf. Chapter 2.3 Architecture and Design: Methods and Tools 
and Chapter 2.4 Quality, reliability, safety and cybersecurity). 

• Upgradability, dealing with variability, extending lifecycle and sustainable operation. 
 

 
Figure 1.3.3 - Advancy (2019) 7report: value creation 

 
  

 

7Advancy, 2019: Embedded Intelligence: Trends and Challenges, A study by Advancy, commissioned by 

ARTEMIS Industry Association. March 2019. Downloadable from: https://www.inside-
association.eu/publications 

 



 

 

1.3.4. MAJOR CHALLENGES 
 
Research and innovation in the domain of embedded software and beyond will have to face 
seven challenges, each generated by the necessity for engineering automation across the 
entire lifecycle of sustainability, embedded intelligence and trust in embedded software. 
 

• Major Challenge 1: Efficient engineering of embedded software. 

• Major Challenge 2: Continuous integration and deployment. 

• Major Challenge 3: Lifecycle management. 

• Major Challenge 4: Embedding data analytics and artificial intelligence. 

• Major Challenge 5: Support for sustainability by embedded software. 

• Major Challenge 6: Software reliability and trust. 

• Major Challenge 7: Hardware virtualization for efficient SW engineering. 
 

1.3.6.1 Major Challenge 1: Efficient engineering of embedded software 
 

1.3.6.1.1. State of the art 
 
Embedded software engineering is frequently more a craft than an engineering discipline, 
which results in inefficient ways of developing embedded software. This is visible, for 
instance, in the time required for the integration, verification, validation and release of 
embedded software, which is estimated to exceed 50% of the total R&D&I expenses.  
 
A new set of challenges to engineering embedded software is introduced with the emergence 
of heterogeneous computing architectures into the mainstream. It will be common for 
embedded systems to combine several types of accelerators to meet power consumption, 
performance requirements, safety, and real-time requirements. Development, optimisation, 
and deployment of software for these computing architectures proves to be challenging. If no 
solutions are introduced which automatically tailor software to specific accelerators8, 9, 
developers will be overwhelmed with the required effort.  
 
Software engineering is exceeding the human scale, meaning it can no longer be overseen by 
a human without supporting tools, in terms of velocity of evolution, and the volume of 
software to be designed, developed and maintained, as well as its variety and uncertainty of 
context. Engineers require methods and tools to work smarter, not harder, and need 
engineering process automation and tools and methods for continuous lifecycle support. To 
achieve these objectives, we need to address the following practical research challenges: 

 

8Advancy, 2019: Embedded Intelligence: Trends and Challenges, A study by Advancy, commissioned by 

ARTEMIS Industry Association. March 2019. Downloadable from: https://www.inside-
association.eu/publications 

 
9https://www.intel.com/content/www/us/en/developer/articles/technical/efficient-heterogenous-parallel-

programming-openmp.html#gs.85zv3a 
 

https://d.docs.live.net/951b8f9c071fde6a/AENEAS/0-%20Strategic%20Agenda/2025%20ECS%20SRIA%20update/Review%20by%203As/2nd%20batch/_blank
https://d.docs.live.net/951b8f9c071fde6a/AENEAS/0-%20Strategic%20Agenda/2025%20ECS%20SRIA%20update/Review%20by%203As/2nd%20batch/_blank


 

shorter development feedback loops; improved tool-supported software development; 
methods and tools to enable strongly linked, yet independent and heterogenous 
development processes in new areas like software defined vehicles (SDV); empirical and 
automated software engineering; and safe, secure and dependable software platform 
ecosystems. 
 

1.3.6.1.2. Vision and expected outcome 
 
The demand of embedded software is higher than we can humanly address and deliver, 
exceeding human scale in terms of evolution speed, volume and variety, as well as in 
managing complexity. The field of embedded software engineering needs to mature and 
evolve to address these challenges and satisfy market requirements. In this regard, the 
following four key aspects must be considered. 
 

(A) From embedded software engineering to cyber physical systems engineering 
Developing any high-tech system is, by its very nature, a multi-disciplinary project. There is a 
whole ecosystem of models (e.g. physical, mechanical, structural, (embedded) software and 
behavioural) describing various aspects of a system. While many innovations have been 
achieved in each of the disciplines separately, the entirety still works in silos, each with their 
own models and tools, and only interfacing at the borders between them. This traditional 
separation between the hardware and software worlds, and individual disciplines, is 
hampering the development of new products and services. 
 
Instead of focusing only on the efficiency of embedded software engineering, we already see 
that the field is evolving into direction of cyber physical systems (cf. Chapter 2.3 Architecture 
and Design: Methods and Tools), and software is one element of engineering. Rather than 
silos and handovers at the discipline’s borders, we expect tools to support the integration of 
different engineering artefacts and enable, by default, effective development with quality 
requirements in mind – such as safety, security, reliability, dependability, sustainability, 
trustworthiness, and interoperability. New methods and tools will need to be developed to 
further facilitate software interaction with other elements in a system engineering context 
(cf. Chapter 2.3 Architecture and Design: Methods and Tools). 
 
Software-defined systems enable the implementation of complex and customisable 
functionalities in CPS. The equivalent for the automotive industry is the software-defined 
vehicle (SDV), which often includes the concept of the connected vehicle and the associated 
cloud services. SDVs combine mechatronic - often safety-critical and real-time-capable - 
systems with edge, internet, app and cloud technologies. This requires the integration of 
embedded software (open and closed source), which in turn is often developed according to 
different paradigms, standards and business models. In the target vehicle system, these 
parts must not only function together, but also fulfill strict quality standards and, where 
applicable, legal regulations. SOA-based approaches are expected to contribute significantly 
towards these goals. Methods and tools are required that support individual but linked 
development cycles in the respective paradigms and at the same time enable the 
composition of the overall system, but also the decomposition of results from diagnostics, 
verification and validation back to the individual part. 
 



 

Artificial intelligence is a technology that holds a great potential in dealing with large amounts 
of data, and potentially could be used for understanding complex systems. In this context, 
artificial intelligence has the potential to automate some daily engineering tasks, moving 
boundaries of type and size of tasks that are humanly possible in software engineering. 
 

 
Figure 1.3.4 - Direct job creation – Europe (2012, m jobs) Source: EU, IDC, Destatis, Roland Berger 

(B) Software architectures for optimal edge computing 
 
At the moment, Edge computing lacks proper definition and, including many different types 
of managed and unmanaged devices, this leads to uncertainty and difficulties on how to 
efficiently and effectively use software architectures, including aspects as resource, device, 
and network management (between edge devices as well between edge and fog/cloud), 
security, useful abstractions, privacy, security, reliability, and scalability. Additionally, 
automatic reconfiguration, adaptation and re-use face a number of challenges. These 
challenges are caused by diversity of edge devices and wide range of requirements in terms 
of Quality of Service (e.g. low latency, high throughput). In addition, sustainability and 
reliability are difficult to ensure when trying to prioritize between Quality of Service on the 
edge and end-to-end system Quality of Service. 
Furthermore, the lack of definition also hampers the growing need for energy efficient 
computing and the development of energy consumption solutions and models across all 
layers from materials, via software architecture to embedded/application software. Energy 
efficiency is vital for optimal edge computing. 
Lastly, as AI is also moving towards the edge (i.e., Edge AI) defining lightweight models and 
model architectures that can deal with low amounts of data available on the edge and still 
provide good model accuracy are desperately needed. Finally, this limits transfer of common 
solution patterns, best practices, and reference architectures, as Edge computing scope and 
configuration requires further clarification and classification. 



 

Since edge devices need to be self-contained, edge software architectures need to support, 
from the one side, virtual machine-like architectures, and from the other side they need to 
support the entire software lifecycle. The fact that there are many different types of edge 
devices also requires an interoperability standard to ensure that they can work together. 
Innovations in this field should focus on, amongst others, software-hardware co-design, 
virtualisation and container technologies and new standard edge software architecture 
(middleware). 
It is essential to discuss types of quality properties that become more significant as Edge 
computing is introduced, and based on these, build use cases that profit from quality 
properties specific to edge computing. There is a need for new approaches that enable early 
virtual prototyping of edge solutions, as well as approaches that enable verification and 
validation of quality properties during the entire life cycle of edge software systems. One of 
the possibilities for profiting from Edge is to focus on digital twins to monitor divergences 
from expected behaviour and implement logic that will benefit from Edge’s low latency when 
making critical decisions, especially in safety critical software systems. 
 

(C) Integration of embedded software 
 
To ensure software development is more effective and efficient, it is necessary to place 
greater focus on integrating embedded software into a fully functional system. First, 
innovation in continuous system integration must include more effective ways of integrating 
legacy components into new systems (see also D). Second, for the integration of data and 
software, the embedded software running in the field has to generate data (such as on run-
time performance monitoring, system health, quality of output, compliance to regulations, 
user interactions) that can be re-used to improve its quality and performance. By improving 
this, the data and software integration can not only improve the efficiency of embedded 
software itself, but also the internal coordination and orchestration between components of 
the system by ensuring a rapid feedback cycle. Third, it is paramount to enable closer 
integration of software with the available computing accelerators. This must be done in a way 
that frees developers from additional effort, while at the same time uses the full potential of 
heterogeneous computing hardware. 
 

(D) Using abstraction and virtualisation 
 
The recent focus on model-driven (or “low-code”) software development has sparked a new 
approach to managing complexity and engineering software. Generating embedded software 
from higher-level models can improve maintainability and decrease programming errors, 
while also improving development speed. However, creating and managing models of real 
systems with an appropriate level of detail that allows for simulation and code generation is 
a challenge. Managing models and their variability is a necessity if we want to prevent shifting 
the code legacy problem to a model legacy problem where there are too many models with 
too much variety. 
 
The core elements of the domain are captured in a language of the domain. The introduction 
of domain-specific languages (DSLs) and aspect-oriented languages has allowed for the 
inclusion of aspects and constructs of a target application domain into the languages used to 
develop embedded software. This abstraction allows for shortening the gap between 



 

software engineers and domain experts. We expect innovations in DSLs and tool support to 
establish a major boost in the efficiency of embedded software development. 
 
The increased level of abstraction allows for more innovation in virtualisation of systems and 
is a step towards correctness by construction instead of correctness by validation/testing. 
Model-based engineering and digital twins of systems are already being used for a variety of 
goals – such as training, virtual prototyping and log-based fault analysis. Furthermore, they 
are necessary for supporting the transition towards sustainable ECPS. Innovations in 
virtualisation will allow DSLs to be (semi-)automatically used to generate digital twins with 
greater precision and more analysis capabilities, which can help us to explore different 
hardware and software options before a machine is even built, shortening development 
feedback loops due to such improved tool-supported software development. 
 

(E) Resolving legacy 
 
Legacy software and systems still constitute most of the software running in the world today. 
It is only natural that the amount of legacy software increases in the future. While it is 
paramount to develop new and improved techniques for the development and maintenance 
of embedded software, we cannot ignore the systems currently in operation. New software 
developed with novel paradigms and new tools will not run in isolation, but rather have to be 
used increasingly in ecosystems of connected hardware and software, including legacy 
systems. 
 
There are two main areas for innovation here. First, we need to develop efficient ways of 
improving interoperability between new and old. With years of development, and a need to 
continue operations, we will have to depend on legacy software for the foreseeable future. It 
is therefore imperative to develop new approaches to facilitating reliable and safe 
interactions, including wrapping old code in re-usable containers. Second, we must innovate 
the process to (incrementally) migrate, rejuvenate, redevelop and redeploy legacy software, 
both in isolation and as part of a larger system. We expect innovations in these areas to 
increase efficiency and effectiveness in working with legacy software in embedded software 
engineering. 
 

1.3.6.1.3. Key focus areas 
 
The key focus areas in the domain of efficient embedded software engineering include the 
following. There is a strong relation between Major Challenges 1, 2, 3, and 6 below, and 
Chapter 2.3 "Architectures and Design: Methods and Tools“, specifically Major Challenges 1 
and 2. 
 
 

• Model-based software engineering: 
o Model-based software engineering enabling systems to become part of SoS. 
o Model inference to enable re-use, refactoring and evolution of existing 

subsystems in SoS. 
o Model-based testing that takes the re-use of uncontrolled systems into 

account. 



 

o Embedded software architectures to facilitate building SoS. 
 

• Digital twinning: 
o Virtualisation as a means for dealing with legacy systems. 
o Virtualisation and virtual integration testing (using Digital Twins and 

specialized design methods, like, e.g. contract-based design, for guaranteeing 
safe and secure updates (cf. Architecture and Design: Methods and Tools 
Chapter 2.3). 

o Approaches to reduce re-release/re-certification time, e.g. model-based 
design, contract-based design, and modular architectures. 

o Distinct core system versus applications and services. 
o Design for X (e.g design for test, evolvability and updateability, 

diagnostability, and adaptability). 
 
 

• Constraint environments: 
o Knowledge-based leadership in design and engineering. 
o Resource planning and scheduling (including multi-criticality, heterogeneous 

platforms, multicore, software portability). 
o Simulation and Design for software evolution over time, while catering for 

distinct phases. 
o Exploiting hybrid compute platforms, including efficient software portability. 

 

• Software technology: 
o Virtualisation as a tool for efficient engineering. 
o Interface management enabling systems to become part of SoS. 
o Technology for safe and dependable software ecosystems. 
o Artificial intelligence-based tools to support software engineering, software 

production and testing efforts. 
o Co-simulation platforms. 

 
 

• SW engineering tools: 
o Integrating embedded AI in software architecture and design. 
o Programming languages for developing large-scale applications for 

embedded systems. 
o Models & digital twins, also at run-time for maintainability and sustainability. 
o Programming models, compilers, code generators, and frameworks for 

optimal use of heterogeneous computing platforms. 
o Co-simulation platforms. 
o Tools, middleware and (open) hardware with permissible open-source 

licenses. 
o Methods and tools that support individual but linked development cycles in 

the respective paradigms (safety, real-time, edge/cloud, open/closed source) 
and velocities on the one hand, and integration, verification and validation in 
complex target systems like SDV on the other hand. 
 



 

 

1.3.6.2 Major Challenge 2: Continuous integration and deployment 
 

1.3.6.1.4. State of the art 
 
It is fair to assume that most future software applications will be developed to function as 
part of a certain platform, and not as stand-alone components. In some embedded system 
domains, this idea has been a reality for a decade (e.g. in the AUTomotive Open System 
Architecture (AUTOSAR) partnership, which was formed in 2003). Increasingly the platforms 
have to support SoS and IoT integration and orchestration, involving a large amount of diverse 
small devices. Guaranteeing quality properties of software (e.g. safety and security) is a 
challenging task, and one that only becomes more complex as the size and distribution of 
software applications grow, especially if software is not properly designed for its intended 
operational context (cf. Chapter 2.3 Architecture and Design: Methods and Tools). Although 
we are aiming towards continuous integration on the level of IoT and SoS, we are still 
struggling with the integration of code changes from multiple contributors into a single 
software system. 
 
One aspect of the problem relates to the design of SoS10, which are assumed to be composed 
of independent subsystems but over time have become dependent. Orchestration between 
the different subsystems, that may involve IoT as well, is an additional issue here. Another 
aspect relates to the certification of such systems that requires a set of standards. This applies 
especially for IoT and SoS and it is complicated by the introduction of AI into software systems. 
Although AI is a software-enabled technology, there are still many issues on the system level 
when it comes to its integration into software systems. It is particularly challenging to ensure 
their functional safety and security, and thus to certify such systems. Some of the existing 
initiatives include, e.g. for vehicles, ISO 21448 (Road Vehicles – Safety Of The Intended 
Functionality (SOTIF)), ISO/TR 4804 (followed by ISO/AWI TS 5083, currently in development), 
ANSI/UL 4600 Standard for Safety for the Evaluation of Autonomous Products, and SAE J3016, 
which recommends a taxonomy and definitions for terms related to automated driving. Note, 
that AI may be applied as an engineering tool to simplify certification. 
 
Finally, integration and delivery practices are part of the engineering processes. Although 
methodologies already exist to achieve this (such as DevSecOps and ChatOps), these mostly 
relate to software production. With ECPS, continuous integration becomes increasingly more 
complex due to the wide range of hardware architectures and platforms, each with its own 
unique characteristics. Continuous integration must account for this diversity, requiring cross-
compilation and testing on various target devices. Continuous delivery must deal with the fact 
that the products into which the new software modules have to be delivered are already sold 
and ‘working in the field’, often in many different variants (i.e. the whole car fleet of an OEM). 
Even in domains where the number of variant systems is small, retaining a copy of each 
system sold at the producing company in order to have a reference target is prohibitive. Thus, 
virtual integration using model-based design methods (including closed-box models for legacy 
components) and digital twins used as integration targets as well as for verification & 

 

10 https://www.khronos.org/sycl/ 
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validation by physically accurate simulation are a mandatory asset for any system company 
to manage the complexity of ECPS and their quality properties. System engineering employing 
model-based design and digital twins must become a regular new engineering activity. 
 

1.3.6.1.5. Vision and expected outcome 
 
Europe is facing a great challenge with the lack of platforms that are able to adopt embedded 
applications developed by individual providers into an ecosystem (cf. Reference Architectures 
and Platforms in Chapter 2.3). The main challenges here are to ensure the adequate 
functionality of integrated systems (which is partially solved by the micro-services approach), 
while ensuring key quality properties such as performance, safety, and security (see also 
Major Challenge 6), which is becoming increasingly complex and neglected as we adopt 
approaches that facilitate only integration on the functional level. Instrumental for these 
challenges is the use of integration and orchestration platforms that standardise many of the 
concerns of the different parts in the SoS, some of which are connected via IoT. In addition, 
Automated engineering processes such as CI/CD will be crucial to adapt. The primary DevOps 
methodology needs to be adjusted for the ECPS. For example, CI pipelines will enable 
toolchain selection configuration for cross-compiling, or they will include real-time testing 
and validation, which can be more challenging to automate and verify. Integrating automated 
tests for hardware interactions can be complex and require specialized hardware-in-the-loop 
(HIL) testing setups. 
ECPS will become a part of an SoS and eventually SoECPS. SoS challenges like interoperability, 
composability, evolvability, control, management and engineering demand ECPS to be 
prepared for a life as a part of a SoS (cf. Chapter 1.4 System of systems). Thus, precautions at 
individual ECPS's are necessary to enable cost efficient and trustworthy integration into SoS.  
Therefore, it is essential to tackle these challenges by good engineering practices: (i) providing 
sets of recommended code and (system to system) interaction patterns; (ii) avoiding anti-
patterns; and (iii) ensuring there is a methodology to support the integration from which the 
engineers of such systems can benefit. This implies aiming to resolve and pre-empt as many 
as possible of the integration and orchestration challenges at the platform design level. It also 
involves distribution of concerns to the sub systems in the SoS or IoT. Followed by automated 
engineering processes applying the patterns and dealing with the concerns in standardised 
ways. Besides this, it is necessary to facilitate communication between different stakeholders 
to emphasise the need for quality properties of ECPS, and to enable (automated) mechanisms 
that raise concerns sufficiently early to be prevented, while minimising potential losses. 
 
On the development level, it is key to enhance the existing software systems development 
methodologies to support automatic engineering, also to automate the validation and 
verification processes for new features as they are being introduced into the system. This 
might need the use of AI in the validation and verification process. At this level, it is also 
necessary to use software system architectures in the automation of verification and other 
engineering practices, to manage the complexity that arises from such integration efforts 
(also see Major Challenge 3 below). 
 
 
  



 

Artificial Intelligence and Machine Learning 
 
Progress in AI keeps being fast-paced. While typical ECPS-needs such as Computer Vision are 
dominated by AI since quite some time, recent progress in Large Language Models (LLMs) 
opened the door to serious AI-assisted engineering tools. Hence, AI is on the way to becoming 
an important tool for the engineering of Embedded Software, while being an essential part of 
Embedded Software at the same time. 
 
AI in Embedded Software. Simply speaking, AI lets us implement functions we don’t need to 
understand as they are learned automatically. This has advantages and drawbacks. We take 
advantage of this property in tiny sensors, where AI (e.g. TinyML) automatically approximates 
a mapping of property changes of some material to a measurement value, in prediction, 
control or virtual sensing, where AI has learned to interpret time series, images, or other 
forms of data, and many other tasks, including detection and tracking of objects. AI functions 
can also serve as (automated) abstractions. With this versatility, wide-spread adoption, and a 
potential non-understanding of what was learned, come challenges like fitting the AI 
functionality to the available resources (cf. RISC-V with research on AI accelerators), 
testability / explainability / trustworthiness / integration in safety critical applications, real-
time performance, updateability / continuous learning / maintainability, and more. In general, 
AI in Embedded Software faces all the same challenges standard Embedded Software has, 
some in a more demanding form of course. For example, using sub-symbolic AI in a safety-
critical context is without a clear-cut solution regarding the trustworthiness issues. To 
compensate for these, extensive monitoring, and the implementation of certain architectures 
(e.g. Simplex) might be necessary. This shows that relying on AI in a system will have a big 
impact on the system design. Relying on AI will also have a massive impact on verification 
planning and software engineering as, e.g. proper training and validation data sets need to be 
provided. 
 
AI for Embedded Software engineering. Software engineering is the discipline of building 
software in a proper way. AI can help with that, and AI functionality has been explored in 
tools for software engineering for some time. However, up to now AI-algorithms were mostly 
used in tools for verification (automated test case generation, checking) and less so in others. 
Recent developments in LLMs demonstrate the huge potential for using AI in areas like model 
or code generation from natural language, refactoring or “rejuvenation” of legacy software, 
porting software while preserving investment, or automatically adapting software to different 
settings/platforms. Like before, the major challenge is that there is no guarantee on the 
correctness or fit-for-purpose on the output of these LLMs, which is a major research 
opportunity at the same time. In future, AI is likely to replace many of the software-coding 
activities done by engineers today. Also, domain specific models will speed-up software 
design & generation by a considerable amount, and AI will support engineers in system 
understanding and in mastering complexity. 
Summing up, AI hasn’t yet shown its full potential for the use in and around Embedded 
Software – there are still many challenges left as demanding research topics. However, based 
on the current state-of-art and results, it is clear that AI will be a core part of future Embedded 
Software and ECPS. 
 



 

The RISC-V instruction set architecture (ISA) is the fifth version of the Berkeley ISA that has 
seen exponential commercial and academic adoption in the last 10 years thanks to its open-
source nature, as well as its modularity, extendibility, and simple architecture. Many 
commercial users adopt RISC-V in their System-On-Chips, from both open-source repositories 
(where the Register-Transfer-Level description of the RISC-V CPU is published), or from 
closed-source IP vendors. The increase in silicon devices together with the need for digital 
sovereignty caused many national and international organizations to take action, and RISC-V 
is a main actor of this revolution. For example, the European Commission11 is building an 
open-source ecosystem to expand its innovation on RISC-V to compete with existing 
commercial alternatives, covering hardware design and system-on-chips, all the way to 
electronic design automation tools and the full software stack. In this scenario, OpenHW 
Group12 and the Eclipse Foundation13 play a key role in developing open-source, high-quality, 
silicon-proven RISC-V IPs under a permissive license. Both the not-for-profit foundations are 
driven by their members, who invested in RISC-V and open-source-based System-On-Chip. 
The modularity and extendability of the RISC-V ISA allow users to design their own 
architecture to meet the ultra-low-power and energy-efficient edge-computing devices 
constraints, as well as high-performance server machines requirements. For example, the 
“RVV RISC-V Vector” ISA extension allows to process multiple data concurrently, or custom 
extensions for security to encrypt data more efficiently. For this reason, it is crucial to have a 
holistic software stack to cope with the wide range of applications, taking into account the 
deployment of efficient applications leveraging the different ISA extensions and computer 
architectures. 

 
 

1.3.6.1.6. Key focus areas 
 
The key focus areas identified for this challenge include the following: 
 

• Continuous integration of embedded software: 
o Model based design and digital twins to support system integration (HW/SW) 

and HW/SW co-development (increasingly new technologies have to be 
integrated). 

o Applying automation of engineering, taking architecture, platforms and 
models into account. 

o Virtualisation and simulation as tools for managing efficient integration and 
validation of configurations, especially for shared resources and other 
dependability issues. 

 

11R. Kazman, K. Schmid, C. B. Nielsen and J. Klein, "Understanding patterns for system of systems integration," 

2013 8th International Conference on System of Systems Engineering, 2013, pp. 141-146, doi: 
10.1109/SYSoSE.2013.6575257 

 
12https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-

open-source-hardware-software-and-risc-v 
 
13https://www.openhwgroup.org/projects/ 
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o Application of integration and orchestration practices to ensure standard 
solutions to common integration problems. 

o Integration and orchestration platforms and separation of concerns in SoS 
and IoT. 

o Enabling reliable and safe continuous SW delivery to already working devices. 
 
 

• Verification and validation of embedded software: 
o (Model) test automation to ensure efficient and continuous integration of 

CPSs. 
o Enabling secure and safe updates (cf. Major Challenge 3) and extending 

useful life (DevOps). 
o Continuous integration, verification and validation (with and without AI) 

enabling continuous certification with automated verification & validation 
(especially the focus on dependability), using model-based design 
technologies and digital twins; also when SoS and IoT are involved. 

o Certification of safety-critical software in CPSs. 
 

 
 

1.3.6.3 Major Challenge 3: Lifecycle management  
 

1.3.6.3.1 State of the art 
 
Complex systems such as airplanes, vehicles and medical equipment are expected to have a 
long lifetime, often up to 30 years. The cost of keeping these embedded systems up to date, 
making them relevant for the everyday challenges of their environment is often time-
consuming and costly. This is becoming more complex due to the fact that most of these 
systems are cyber-physical systems, meaning that they link the physical world with the digital 
world, and are often interconnected with each other or to the internet. With more and more 
functionalities being realized by embedded software, over-the-air updates – i.e. deploying 
new, improved versions of software-modules unto systems in the field – become an 
increasingly relevant topic. Apart from updates needed for error and fault corrections, 
performance increases and even the implementation of additional functionalities – both 
optional or variant functionalities that can be sold as part of end-user adaptation as well as 
completely new functionalities that are needed to respond to newly emerging environmental 
constraints (e.g. new regulations, new features of cooperating systems). Such update 
capabilities perfectly fit and are even required for the ‘continuous development and 
integration’ paradigm. 
 
Embedded software also must be maintained and adapted over time, to fit new product 
variants or even new product generations and enable updateability of existing systems. If this 
is not effectively achieved, the software becomes overly complex, with prohibitively 
expensive maintenance and evolution, until systems powered by such software are no longer 
sustainable. 
 



 

We must break this vicious cycle and find new ways to create software that is long-lasting and 
which can be cost-efficiently evolved and migrated to use new technologies. Practical 
challenges that require significant research in software sustainability include: (i) organisations 
losing control over software; (ii) difficulty in coping with modern software’s continuous and 
unpredictable changes; (iii) dependency of software sustainability on factors that are not 
purely technical; (iv) enabling “write code once and run it anywhere” paradigm. 
 

1.3.6.3.2 Vision and expected outcome 
 
As software complexity increases, it becomes more difficult for organisations to understand 
which parts of their software are worth maintaining and which need to be redeveloped from 
scratch. Therefore, we need methods to reduce the complexity of the software that is worth 
maintaining and extracting domain knowledge from existing systems as part of the 
redevelopment effort. This also relates to our inability to monitor and predict when software 
quality is degrading, and to accurately estimate the costs of repairing it. Consequently, 
sustainability of the software is often an afterthought. This needs to be flipped around – i.e. 
we need to design “future-proof” software that can be changed efficiently and effectively, or 
at least platforms for running software need to either enable this or force such way of 
thinking. 
As (embedded) software systems evolve towards distributed computing, SoS and 
microservice-based architectural paradigms, it becomes even more important to tackle the 
challenges of integration at the higher abstraction levels and in a systematic way. Especially 
when SoS or IoT is involved, it is important to be able to separate the concerns over the 
subsystems. 
The ability of updating systems in the field in a way that safety of the updated systems as well 
as security of the deployment process is maintained will be instrumental for market success 
of future ECPS. Over-The-Air solutions become key enablers to this regard, especially for 
distributed systems, and they will have to cover the different paces at which HW and SW 
evolve, determining when updates become necessary. Edge-to-cloud continuum represents 
an opportunity to create software engineering approaches and engineering platforms that 
together enable deployment and execution of the same code anywhere on this computing 
continuum. 
 
The ability of keeping track of system parameters like interface contracts and composability 
requires a framework to manage these parameters over the lifetime. This will enable the 
owner of the system to identify at any time how the system is composed and with what 
functionality. To this regard, the onboarding process of the constituent systems becomes a 
crucial phase to maintain the desired levels of security and safety: SoS integration platforms 
should provide solid onboarding procedures that guarantee no compromised HW and SW 
become part of the SoS. The adoption of block chain technologies, digital contracts and 
security certificates, etc. could prevent similar situations, which could impact not only the SoS 
during operation but also the entire supply chain associated to it. The onboarding phase 
should also be automated to increase security levels and ensure scalability. 
 
Instead of focusing just on the efficiency of embedded software engineering, we already see 
that the field is evolving into the direction of cyber physical systems (cf. Chapter 2.3 
Architecture and Design: Methods and Tools), and software is one element of engineering. 



 

 
Many software maintenance problems are not actually technical but people problems. There 
are several socio-technical aspects that can help, or hinder, software change. We need to be 
able to organise the development teams (e.g. groups, open-source communities) in such a 
way that it embraces change and facilitates maintenance and evolution, not only immediately 
after the deployment of the software but for any moment in the software lifecycle, for the 
decades that follow, to ensure continuity. We need platforms that are able to run code 
created for different deployment infrastructures, without manual configuration. 
 
The expected outcome is that we are able to keep embedded systems relevant and 
sustainable across their complete lifecycle, and to maintain, update and upgrade embedded 
systems in a safe and secure, yet cost-effective way. 
 

1.3.6.3.3 Key focus areas 
 
The key focus areas identified for this challenge include the following. 
 

• Rejuvenation of systems: 
o Software legacy and software rejuvenation to remove technical debt (e.g. 

software understanding and conformance checking, automatic redesign and 
transformation). 

o Continuous platform-agnostic integration, deployment and migration. 
o End-of-life and evolving off-the-shelve/open source (hardware/software). 

 
 

• Managing complexity over time: 
o Interplay between legacy software and new development approaches. 
o Vulnerability of connected systems. 
o Continuous certification of updates in the field (reduce throughput time). 
o Intelligent Diagnostics of systems in the field (e.g. guided root cause analysis). 

 

• Managing configurations over time: 
o Enable tracking system configurations over time. 
o Create a framework to manage properties like composability and system 

orchestration. 
 

• Evolvability of embedded software: 
o Technology, including automation of engineering and the application of 

integration and orchestration platforms, for keeping systems maintainable, 
adaptable and sustainable considering embedded constraints with respect to 
resources, timing and cost: new functionalities enabling and facilitating 
secure and automated onboarding processes, OTA software maintenance 
(see also the SoS chapter), …. 

o Embedded software architectures to enable SoS. 
  



 

 

1.3.6.4 Major Challenge 4: Embedded Artificial Intelligence 
 

1.3.6.4.1 State of the art 
 
For various reasons – including privacy, energy efficiency, latency and the increasing necessity 
of smart data analytics on site – processing and artificial intelligence are moving towards the 
edge (edge computing), forcing the software stacks of embedded systems to coherently 
evolve supporting these new computing paradigms. As detailed in the Chapter “Edge 
Computing and Embedded Artificial Intelligence”, non-functional constraints of embedded 
systems, such as timing, energy consumption, low memory and computing footprint, being 
tamperproof, etc., need to be taken into account compared to software with similar 
functionalities when migrating these from the cloud to the edge. Furthermore, the Quality, 
Reliability, Safety and Security Chapter states that key quality properties when embedding of 
AI components in digitalized ubiquitous systems are determinism, understanding of nominal 
and degraded behaviours of the system, their certification and qualification, and clear liability 
and responsibility chains in the case of accidents. When engineering software contains AI-
based solutions, it is important to understand the challenges that such solutions introduce. 
Indeed, AI contributes to address challenges of embedded software, but it does not define 
them exclusively itself, as quality properties of embedded software depend on integration of 
AI-based components with other software components. 
For efficiency reasons, very intensive computing tasks (such as those based on deep neural 
networks, DNNs) are being carried out by various accelerators embedded in systems on a chip 
(SoCs). Although the “learning” phase of a DNN is still mainly done on big servers using 
graphics processing units (GPUs), local adaptation is moving to edge devices. Also, LLMs are 
experiencing a similar evolution towards the edge. Alternative approaches, such as federated 
learning, allow for several edge devices to collaborate in a more global learning task. 
Therefore, the need for computing and storage is ever-increasing, and is reliant on efficient 
software support. 
 
The “inference” phase (i.e. the use after learning) is also requiring more and more resources 
because neural networks are growing in complexity exponentially. Once carried out in 
embedded GPUs, this phase is now increasingly performed on dedicated accelerators. Most 
middle and high-end smartphones have SoCs embedding one of several AI accelerators, as 
well as Mx Apple processors family for laptops, tablets and future wearables – for example, 
the Nvidia Jetson Xavier NX is composed of six Arm central processing units (CPUs), two 
inference accelerators, 48 tensor cores and 384 Cuda cores. Obtaining the best of the 
heterogeneous hardware is a challenge for the software, and the developers should not 
have to be concerned about where the various parts of their application are running. 
 
Once developed (on servers), a neural network has to be tuned for its embedded target by 
pruning the network topology using less precision for operations (from floating point down 
to 1-bit coding) while preserving accuracy. This was not a concern for the “big” AI 
development environment providers (e.g. Tensorflow, PyTorch, Caffe2, Cognitive Toolkit) 



 

until recently. This has led to the development of environments designed to optimise neural 
networks for embedded architectures14 to move towards the Edge.  
 
Most of the time the learning is done on the cloud. For some applications/domains, making a 
live update of the DNN or LLM characteristics is a sought-after feature, including all the risks 
of security, interception. Imagine the consequences of tampering with the DNN or LLM used 
for a self-driving car! A side-effect of DNN or LLM is that intellectual property is not in a code 
or algorithm, but rather lies in the network topology and its weights, and therefore needs to 
be protected. 
 

 
 
Figure 1.3.5 - Data analytics and Artificial Intelligence require dedicated embedded hardware architectures 

 

1.3.6.4.2 Vision and expected outcome 
 
European semiconductor companies lead a consolidated market of microcontrollers and low-
end microprocessors for embedded systems, but are increasing the performance of their 
hardware, mainly driven by the automotive market and the increasing demand for more 
performing AI for advanced driver-assistance systems (ADAS) and self-driving vehicles. With 
edge computing and embedded AI this trend has extended to other vertical domains that are 
key for Europe. European semiconductor companies are also moving towards greater 
heterogeneity by adding specialised accelerators. On top of this, Quality, Reliability, Safety 
and Security Chapter lists personalization of mass products and resilience to cyber-attacks, as 
the key advantage and the challenge characterizing future products. Embedded software 
needs to consider these and find methods and tools to manage their effects on quality 
properties of software that integrates them. Also, embedded software engineering will need 
to ensure interoperability between AI-based solutions and non-AI parts. 

 

14https://www.eclipse.org/ 
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In this context, there is a need to provide a programming environment and libraries for the 
software developers. A good example here is the interchange format ONNX, an encryption 
format for protection against tampering or reverse engineering that could become the 
foundation of a European standard. Beside this, we also need efficient libraries for 
signal/image processing for feeding data and learning into the neural network, abstracting 
from the different hardware architectures. These solutions are required to be integrated and 
embedded in ECPS, along with significant effort into research and innovation in embedded 
software. 
 

1.3.6.4.3 Key focus areas 
 
The key focus areas identified for this challenge include the following. 
 

• Federated and distributed learning: 
o Create federated learning at the edge in heterogeneous distributed systems 

(analysis, modelling and information gathering based on local available 
information). 

o Federated intelligence at the edge (provide context information and 
dependability based on federated knowledge). 

 

• Embedded Intelligence: 
o Create a software AI framework to enable reflecting and acting on the 

systems own state. 
o Dynamic adaption of systems when environment parameters and sensors like 

IoT devices are changing. 
 

• Data streaming in constraint environments: 
o Feed streaming data into low-latency analysis and knowledge generation 

(using context data to generate relevant context information). 
 

• Embedding AI accelerators: 
o Accelerators and hardware/software co-design to speed up analysis and 

learning (e.g. patter analysis, detection of moves (2D and 3D) and trends, 
lighting conditions, shadows). 

o Actual usage-based learning applied to accelerators and hardware/software 
co-design (automatic adaptation of parameters, adaptation of dispatch 
strategies, or use for new accelerators for future system upgrades). 

  



 

 

1.3.6.5 Major Challenge 5: Support for sustainability by embedded 
software 

 

1.3.6.5.1 State of the art 
 
The complete power demand in the whole ICT market currently accounts from 5% to 9% of 
the global power consumption15. The ICT electricity demand is rapidly increasing and it could 
go up to nearly 20% in 2030. Compared to estimated power consumption of future large data 
centres, embedded devices may seem to be a minor problem. However, when the devices are 
powered by batteries, they still have a significant environmental impact. Energy efficient 
embedded devices produce less hazardous waste and last longer without the need for 
replacement. 
 
The growing demand for ultra-low power electronic systems has motivated research into 
device technology and hardware design techniques. Experimental studies have proven that 
the hardware innovations for power reduction can be fully exploited only with proper design 
of the upper layer software. Partitioning hardware enables smart power-up/power-down 
strategies. Together with support through resource-aware algorithms, this could lead to 
significant energy savings. The same applies to software power and energy modelling and 
analysis: the first step towards the energy reduction is complex due to the inter- and intra-
dependencies of processors, operating systems, application software, programming 
languages and compilers. Software design and implementation should be viewed from a 
system energy conservation angle rather than as an isolated process. 
For sustainability, it is critical to understand quality properties of software. These include in 
the first place power consumption, and then other related properties (performance, safety, 
security, and engineering-related effort) that we can observe in the context of outdated or 
inadequate software solutions and indicators of defected hardware. Power reduction 
strategies are mainly focusing on processing, storage, communication, and sometimes on 
other (less intelligent) equipment. 
For the future embedded software developers, it is crucial to keep in touch with software 
development methodologies focused on sustainability, such as green computing movement, 
resource-aware computing and, more generally, sustainable programming techniques. In the 
domain of embedded software, examples include the estimation of the remaining useful life 
of the device, the network traffic and latency time optimization, the process scheduling 
optimization or energy efficient workload distribution, the management of HW and SW 
resources oriented to energy saving, the correct use of software abstraction, etc. 
 

1.3.6.5.2 Vision and expected outcome 
 
The concept of sustainability is based on three main pillars: ecological, economic and social. 
The ideal environmentally sustainable (or green) software in general requires as little 
hardware as possible, it is efficient in power consumption, and its usage leads to minimal 
waste production. Embedded software designed to be adaptable for future requirements 

 

15 Such as N2D2, https://github.com/CEA-LIST/N2D2 
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without the need to be replaced by a completely new product is an example of 
environmentally, economically, and socially sustainable software. 
To reach the sustainability goal, the embedded software design shall focus also on energy-
efficient design methodologies and tools, energy efficient and sustainable techniques for 
embedded software and systems production and to the development of energy- and 
resource-aware applications and frameworks for embedded systems, edge computing, 
embedded intelligence and their applications. 
It is evident that energy/power management has to be analysed with reference to the 
context, to the underlying hardware resources and the overall system functionalities. The 
coordinated and concentrated efforts of a system architect, hardware architect and software 
architect should help to introduce energy-efficient systems (cf. Chapter 2.3, Architecture and 
Design: Methods and Tools). The tight interplay between energy-oriented hardware, energy-
aware and resource-aware software calls for innovative structural, functional and 
mathematical models for analysis, design and run-time. Model-based software engineering 
practices, supported by appropriate tools, will definitely accelerate the development of 
modern complex systems operating under severe energy constraints. It is crucial to notice the 
relationship between power management and other quality properties of software systems 
(e.g. under certain circumstances it is adequate to reduce the functionality of software 
systems by disabling certain features, which results in significant power savings). From a 
complementary perspective, when software is aware of the available hardware resources and 
their energy profile, it enables power consumption optimisation and energy saving, being able 
to configure the hardware resources, to activate/deactivate specific hardware components, 
increase/decrease the CPU frequency according to the processing requirements, partition, 
schedule and distribute tasks. 
Therefore, in order to enable and support sustainability through software, software solutions 
need to be reconfigurable in the means of their quality. There must exist strategies for 
HW/SW co-design and accelerators to enable such configurations, and the entire integrated 
development environment should facilitate a rational use of abstraction (abstraction 
simplifies software development but increases the energy consumption) and supports HW 
and SW resources usage optimisation from the energy perspective directly from the 
programming language and through the compiler, linker, assembler, etc. For this to be 
possible, software systems need to be accompanied with models of their quality properties 
and their behaviour, including the relationship between power consumption and other high 
level quality properties. This will also enable balancing mechanisms between local and remote 
computations to reduce communication and processing energy consumption. 
Models (digital twins) should be aware of energy use, energy sources, HW and SW resources 
and their sustainability profile. An example of this in SoS are solar cells that give different 
amounts of energy dependent on time of day and weather conditions. 
 

1.3.6.5.3 Key focus areas 
 
The following key focus areas have been identified for this challenge: 

• Resource-aware software engineering. 

• Tools and techniques enabling the energy-efficient and sustainable embedded 
software design. 

• Development of energy-aware and sustainable frameworks and libraries for 
embedded software key application areas (e.g. IoT, Smart Industry, wearables, etc.). 



 

• Management of computation power on embedded hardware: 
o Management of energy awareness of embedded hardware, embedded 

software with respect to, amongst others, embedded high-performance 
computing (HPC). 

• Composable efficient abstractions that drive sustainable solutions while optimising 
performance: 

o Enabling resource-aware computing. 
o Enabling technologies for the second life of (legacy) cyber-physical systems. 
o Establish relationships between power consumption and other quality 

properties of software systems, including engineering effort (especially in 
cases of computing-demanding simulations). 

o Digital twins can support the management of quality properties of software 
with the goal of reducing power consumption, as the major contributing 
factor to the green deal, enabling sustainability. 

 
 

1.3.6.6 Major Challenge 6: Software reliability and trust 
 

1.3.6.6.1 State of the art 
Two emerging challenges for reliability and trust in ECPS relate to computing architectures 
and the dynamic environment in which ECPS exist. The first challenge is closely related to the 
end of Dennard scaling16. In the current computing era, concurrent execution of software 
tasks is the main driving force behind the performance of processors, leading to the rise of 
multicore and manycore computing architectures. As the number of transistors on a chip 
continues to increase (Moore’s law is still alive), industry has turned to a heavier coupling of 
software with adequate computing hardware, leading to heterogeneous architectures. The 
reasons for this coupling are the effects of dark silicon17 and better performance-to-power 
ratio of heterogeneous hardware with computing units specialised for specific tasks. The main 
challenges for using concurrent computing systems in embedded systems remain: (i) hard-to-
predict, worst-case execution time; and (ii) testing of concurrent software against 
concurrency bugs18. 
 
The second challenge relates to the dynamic environment in which ECPS execute. On the level 
of systems and SoS, architectural trends point towards platform-based designs – i.e. 
applications that are built on top of existing (integration and/or middleware) platforms. 
Providing a standardised “programming interface” but supporting a number of constituent 

 

16https://www.enerdata.net/publications/executive-briefing/between-10-and-20-electricity-consumption-ict-

sector-2030.html 
 
17John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 

62, 2 (February 2019), 48–60. DOI: https://doi.org/10.1145/3282307 
 
18Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011. Dark 

silicon and the end of multicore scaling. In Proceedings of the 38th annual international symposium on 
Computer architecture (ISCA '11). Association for Computing Machinery, New York, NY, USA, 365–376. DOI: 
https://doi.org/10.1145/2000064.2000108 
 

https://www.enerdata.net/publications/executive-briefing/between-10-and-20-electricity-consumption-ict-sector-2030.html
https://www.enerdata.net/publications/executive-briefing/between-10-and-20-electricity-consumption-ict-sector-2030.html
https://doi.org/10.1145/3282307
https://doi.org/10.1145/2000064.2000108


 

subsystems that is not necessarily known at design time, and embedding reliability and trust 
into such designs, is a challenge that can be solved only for very specialised cases. The fact 
that such platforms – at least on a SoS level – are often distributed further increases this 
challenge. 
 
On the level of systems composed from embedded devices, the most important topics are 
the safety, security, and privacy of sensitive data. Security challenges involve: (i) security of 
communication protocols between embedded nodes, and the security aspects on the lower 
abstraction layers; (ii) security vulnerabilities introduced by a compiler19 or reliance on third-
party software modules; and (iii) hardware-related security issues20. It is necessary to observe 
security, privacy and reliability as quality properties of systems, and to resolve these issues 
on a higher abstraction level by design21, supported by appropriate engineering processes 
including verification (see Chapters 2.3 and 2.4). 
 

1.3.6.6.2 Vision and expected outcome 
European industry today relies on developed frameworks that facilitate production of highly 
complex embedded systems (for example, AUTOSAR in the automotive industry).  
 
The ambition here is to reach a point where such software system platforms are mature and 
available to a wider audience. These platforms need to enable faster harvesting of hardware 
computing architectures that already exist and provide abstractions enabling innovators and 
start-ups to build new products quickly on top of them. For established businesses, these 
platforms need to enable shorter development cycles while ensuring their reliability and 
providing means for verification & validation of complex systems. The purpose of building on 
top of these platforms is ensuring, by default, a certain degree of trust for resulting products. 
This especially relates to new concurrent computing platforms, which hold promise of great 
performance with optimised power consumption. Recent developments in programming 
languages - such as Rust - look promising, as they aim to solve some of these inherited 
problems by default, based on available programming language constructs. 
 
Besides frameworks and platforms that enable easy and quick development of future 
products, the key enabler of embedded software systems is their interoperability and 
openness. In this regard, the goal is to develop and make software libraries, software 
frameworks and reference architectures which need to ensure, by design, the potential for 
monitoring, verifying, testing and auto-recovering of embedded systems. That enables 

 

19F. A. Bianchi, A. Margara and M. Pezzè, "A Survey of Recent Trends in Testing Concurrent Software Systems," 

in IEEE Transactions on Software Engineering, vol. 44, no. 8, pp. 747-783, 1 Aug. 2018, doi: 
10.1109/TSE.2017.2707089. 

 
20V. D'Silva, M. Payer and D. Song, "The Correctness-Security Gap in Compiler Optimization," 2015 IEEE 

Security and Privacy Workshops, 2015, pp. 73-87, doi: 10.1109/SPW.2015.33. 

 
21Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémentine Maurice, and Daniel Gruss. 2020. 

Take A Way: Exploring the Security Implications of AMD's Cache Way Predictors. In Proceedings of the 15th 
ACM Asia Conference on Computer and Communications Security (ASIA CCS '20). Association for Computing 
Machinery, New York, NY, USA, 813–825. DOI:https://doi.org/10.1145/3320269.3384746 

 

https://doi.org/10.1145/3320269.3384746


 

interoperability and integration of products developed on distributed computing 
architectures available to a wider audience. One of the emerging trends to help achieving this 
is the use of digital twins. Digital twins are particularly suitable for the verification of safety-
critical software systems that operate in dynamic environments. However, development of 
digital twins remains an expensive and complex process, which has to be improved and 
integrated as part of the standard engineering processes (see Major Challenge 2 in Chapter 
2.3). 
 
We envision an open marketplace for software frameworks, middleware, and digital twins 
that represents a backbone for the future development of products. While such artefacts 
need to exploit the existing software stacks and hardware, they also need to support correct 
and high-quality software by design. Special attention is required for Digital Twin simulations 
of IoT devices to ensure reliability and trust in operating in real life. 
 
 

1.3.6.6.3 Key focus areas 
 
Focus areas of this challenge are related to quality aspects of software. For targets such as 
new computing architectures and platforms, it is crucial to provide methodologies for 
development and testing, as well as for the team development of such software. These 
methodologies need to take into account the properties, potentials and limitations of such 
target systems, and support developers in designing, analysing and testing their 
implementations. As it is fair to expect that not all parts of software will be available for 
testing at the same time, it is necessary to replace some of the concurrently executing models 
using simulation technologies. Finally, these achievements need to be provided as commonly 
available software modules that facilitate the development and testing of concurrent 
software.  
 
New concepts for programming languages, such as Rust, by their default design resolve some 
of the listed issues in developing computing architectures. For example, one of the main goals 
of Rust is handling concurrent and parallel programming in a safe and efficient way22. New 
concepts in the area of programming languages need to balance between several factors. 
From one side, new programming languages need to offer higher productivity to engineers. 
Programming languages need to enable more efficient collaboration between engineers by 
being more suitable to higher level architectural thinking that prioritise decoupled 
development of individual software components. Furthermore, traditional programming 
languages, such as C and C++, are challenging for static analysis due to undecidability of their 
statements23 and in general have huge test space making them susceptible to security issues. 
Finally, new languages need to solve by design complex problems in programming, such as 
concurrency and parallelism. On the other hand, it is necessary to minimize overhead of 

 

22 https://doc.rust-lang.org/book/ch16-00-concurrency.html 
23 Michael Hind. 2001. Pointer analysis: haven't we solved this problem yet? In Proceedings of the 2001 ACM 
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering (PASTE '01). Association 
for Computing Machinery, New York, NY, USA, 54–61. https://doi.org/10.1145/379605.379665 

https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://doi.org/10.1145/379605.379665


 

abstractions in new programming languages (performance24 and energy25 26 overhead). 
Besides creating such languages or extending the existing ones with news features, it is still 
necessary to provide methodologies that will guide industry to migrate their code bases to 
new programming constructs, or at least ensure co-existence and interaction between new 
and old code bases. With the introduction of AI into software engineering, we are looking for 
programming languages that will facilitate a new AI-assisted27 software development 
approach. That means programming languages that engineers can use to easily and as 
deterministically as possible express their intentions, while those languages are suitable for 
AI to enable code generation and automatization of validation, verification, and testing 
activities. Furthermore, we hope to have in the future such programming languages that 
facilitate, with the assistance from AI, analysis of quality properties of whole software stacks 
(e.g., WCET analysis, safety analysis28).   
 
The next focus area is testing of systems against unexpected uses, which mainly occurs in 
systems with a dynamic execution environment. It is important here to focus on testing of 
self-adapting systems where one of the predominant tools is the simulation approach, and 
more recently the use of digital twins. 
 
However, all these techniques are not very helpful if the systems are not secure and reliable 
by design. Therefore, it is necessary to investigate platforms towards reliability, security and 
privacy, with the following challenges.  
 

• Reliable software on new hardware including edge, fog and cloud processing: (co) 
verification of distributed, also heterogenous systems. 

• Verification and validation of ML models. 

• Robustness against unexpected uses: 
o Trustworthy, secure, safe, privacy-aware. 
o Validating self-adapting systems for example through simulation. 

• Security and privacy as a service: 
o To become part of the software architecture. 
o Means and techniques for continuous system monitoring and self-

monitoring. 
 

 

24 There’s plenty of room at the Top: What will drive computer performance after Moore’s law? E. Leiserson et 
all, Science  05 Jun 2020: Vol. 368, Issue 6495, DOI: 10.1126/science.aam9744 
25 Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes, and João 
Saraiva. 2017. Energy efficiency across programming languages: how do energy, time, and memory relate? In 
Proceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering (SLE 2017). 
Association for Computing Machinery, New York, NY, USA, 256–267. 
https://doi.org/10.1145/3136014.3136031 
26 Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes, João Saraiva, 
Ranking programming languages by energy efficiency, Science of Computer Programming, Volume 205, 2021 
27 Russo, Daniel & Baltes, Sebastian & van Berkel, Niels & Avgeriou, Paris & Calefato, Fabio & Cabrero-Daniel, 
Beatriz & Catolino, Gemma & Cito, Jürgen & Ernst, Neil & Fritz, Thomas & Hata, Hideaki & Holmes, Reid & 
Izadi, Maliheh & Khomh, Foutse & Kjærgaard, Mikkel & Liebel, Grischa & Lafuente, Alberto & Lambiase, 
Stefano & Maalej, Walid & Vasilescu, Bogdan. (2024). Generative AI in Software Engineering Must Be Human-
Centered: The Copenhagen Manifesto. Journal of Systems and Software. 216. 112115. 
10.1016/j.jss.2024.112115. 
28 https://hightec-rt.com/rust 



 

 

1.3.6.7 Major Challenge 7: Hardware virtualization for efficient SW 
engineering 

 

1.3.6.7.1 State of the art 
Hardware virtualisation provides efficient abstraction from the physical hardware, thus 

allowing to decouple software engineering lifecycles from the underlying hardware. This is 

usually implemented either by full-scale hypervisors like VMware and KVM, or via 

containerisation as combination with the hosting operating system, e.g. Docker and 

Kubernetes. It enhances efficiency through resource isolation and allocation, and eases 

deployment by offering lightweight, portable, and scalable software packaging. Additionally, 

hardware-assisted virtualisation extensions such as Intel VT-x and AMD-V have improved 

performance and security by offloading virtualisation tasks to the hardware. 

Hardware virtualisation is expected to offer numerous benefits, including increased flexibility, 

portability, and security for safety-critical and non-safety-critical applications. 

 

1.3.6.7.2 Vision and expected outcome 
 

• Standardized Abstraction Models for hardware components to enable cross-
platform compatibility, fostering ease of development and integration. 

• Timing Models: Developing reliable timing models to predict and verify real-time 
behaviour accurately. 

• Unified APIs for different hardware components to promote interoperability. 

• Performant run-time environments supporting shared memory access control, 
leveraging hypervisor technologies like XEN and KVM, as well as 
Bytecode/WebAssembly technologies.  

• Virtualisation of communication (Virtual Networks) supporting Quality of Service 
(QoS) mechanisms to guarantee real-time communication in mixed-criticality 
environments. 

• Hardware Abstraction for Sensors and Actuators, to achieve their interchangeability.  
 

1.3.6.7.3 Key focus areas 
 
To realize the potential of hardware virtualisation, research and development will focus on 
three aspects.  

• Standard development methods and frameworks for the development of hardware 
abstractions, integrated with existing tools.  

• Verification and validation frameworks, supported by automation, which allow for 
the validation of applications within virtualisation, as well as the validation of specific 
target systems, to confirm performance and timeliness. 

• Run-time environments for safety-critical applications. 
 



 

To cover these aspects, it is necessary to understand what they aim to achieve in software 
system engineering terms. To facilitate software development in virtual environments, the 
most common requirement in industry is to enable functional testing on virtual hardware. 
Such testing must provide fast execution feedback suitable for continuous engineering. 
Currently, there already exist techniques that try to achieve this29. What we also need is 
higher integration of such virtual platforms in common engineering development 
methodologies (e.g., Agile). To achieve other goals from the list above (e.g., performance and 
temporal properties evaluation), it is necessary to have more complex, detailed models of 
virtual hardware. Examples of such models currently exist30, but are extremely slow to 
execute. Besides integration of virtual platforms into existing methodologies and making 
execution of these models faster, it is necessary to observe the challenge around this effort 
in a wider scope. Development of virtual prototypes is not easy and often requires significant 
effort and investment. Moreover, management of platforms on which these prototypes 
execute is also a complex task (e.g. using BlueChi31). Finally, management of models, their 
variations, and integration activities with software repositories and test suites is challenging 
and time consuming. Therefore, we need approaches that facilitate faster development of 
virtual platforms, infrastructure around using them in software engineering, and 
management of both the models and the infrastructure. With these efforts, we hope to 
migrate a larger part of the development of embedded software systems to the cloud, 
facilitating collaboration and enabling higher engineering efficiency. 
 

  

 

29 https://newsroom.arm.com/blog/isa-parity 
30 https://www.gem5.org/ 
31 https://projects.eclipse.org/projects/automotive.bluechi 



 

1.3.5. TIMELINE 
 
The following table illustrates the roadmaps for Embedded Software and Beyond. The 
assumption is that on the topics listed, that technology should be ready (TRL 8–9) in the 
respective time-frames. 
 

MAJOR 

CHALLENGE 

TOPIC SHORT TERM 

(2024-2028) 

MEDIUM 

TERM (2029-

2033) 

LONG TERM (2034 and 

beyond) 

Major Challenge 

1: 

Efficient 

engineering of 

embedded 

software 

Topic 1.1: 

Modelling-

based 

software 

engineering 

Model-based 
software 

engineering 

enabling systems 

to become part 

of SoS 

Model 

inference to 

enable re-use 

of existing 

subsystems in 
SoS 

Model-based testing 

taking re-use of 

uncontrolled SoS into 

account 

Topic 1.2 

Digital 

twinning 

Virtualisation of 

legacy systems 

support virtual 

integration 

testing across 

variants 

Support/allow 

(re)certification of 

systems via digital twins 

Topic 1.3: 

Constraint 

environments 

Resource 

planning and 

scheduling 

Design for 

software 

evolution over 

time 

Embedded 

software 

architectures 

to enable SoS 

Exploiting hybrid 

computer platforms, 

including efficient 

software portability 

Topic 1.4: 

Software 

technology 

Virtualisation as 

tool for efficient 

engineering 

Technology for 

safe and 

dependable 

software 

ecosystems 

Interface 

management 

enabling 

systems to 

become part 

of SoS 

Develop new software 

architectures for edge 

computing 

Artificial intelligence to 

assist and support 

efforts in software 

engineering 

Topic 1.5: 

Software 

engineering 
tools 

Co-simulation 

platforms 

Middleware 
controlling 

dynamically 

embedded 

(mobile) 

hardware 

solutions 

Compilers and 

link to new 

hardware 

Programming languages 
for developing large-

scale applications for 

embedded SoS 



 

Major Challenge 

2: 

Continuous 

integration and 

deployment 

Topic 2.1: 

Continuous 
integration 

DevOps modelling 

Virtualisation 

Simulation on a 
virtual 
platform 

Digital twin 

Model-based engineering 

based on digital twins 

Topic 2.2: 

Verification 

and validation 

Virtualisation of 

test platform 

Model-based 
testing 

Integration & 

orchestration platforms 

for IoT and SoS 

Major Challenge 

3: 

Life-cycle 
management of 

embedded 

software 

Topic 3.1: 
Rejuvenation 
of existing 

systems 

Software legacy 

and software 

rejuvenation 

Design for 

rejuvenating 

systems in a later 

phase 

End-of-life and 

evolving off-

the-

shelve/open- 

source 
solutions 

The cloud-for-edge 

continuum - “Write once, 

run anywhere” on this 

computing continuum 

Composability, properties 

contracts and 

orchestration systems 

Interoperability: must be 

ensured in integration 

platforms 

Topic 3.2: 

Managing 
complexity 
over time 

Diagnostics of 

systems in the 

field 

Continuous 
certification 

Interplay between legacy 

Topic 3.3: 

Managing 

Configuration

s over time 

Full life-cycle 

configuration 

tacking 

Methods and 

tools 

managing 

composability 

and system 

orchestration 

Individualized systems 

configuration 

management 

Topic 3.4: 

Evolvability of 

embedded 

software 

Adaptable 
embedded 
software 

Dynamical 

embedded 

software 

Autonomous embedded 

software 

Autonomous processes 
(IoT & edge embedded 

HW/SW co-design) 

Major Challenge 

4: 

Embedding data 

analytics and AI 

Topic 4.1: 

Federated 

learning 

Create federated 

learning at the 

edge in 

heterogeneous 

distributed 

systems 

Federated 

intelligence at 

the edge 

Safe, trustworthy & 

explainable AI 

AI is playing several key 

roles in innovation, e.g. 

as a tool for SW 

development/engineerin

g 

Embedded intelligence 

 

Topic 4.2 Self-reflection: OS support for Support  dynamic 



 

Embedded 

Intelligence 

software AI 

framework 

supports acting 

on own system 

state 

new HW (GPU, 

ASIC, 

neuromorphic 

computing,…)  

and platforms 

(Edge-AI,..) 

adaption of systems 

Topic 4.3: 

Data 

streaming in 

constraint 

environments 

Feed streaming 

data into low-

latency analysis 

and knowledge 

generation 

Support 

processing by 

new HW (GPU, 

ASIC,…) 

 

Topic 4.4: 

Embedding AI 

accelerators 

Accelerators and 

hardware/softwa

re co-design to 

speed up analysis 

and learning 

Actual usage- 

based learning 

applied for 

accelerators 

and 

hardware/soft

ware co-design 

 

Use of AI in autonomous 

systems 

 

Major Challenge 

5: 

Support for 

sustainability by 

embedded 

software 

Topic 5.1: 

resource-

aware 

software 

engineering 

Integration of 

green-aware 

aspects in 

software 
integration 

Adaptive 

processing 

based on 

energy-

awareness 

 

Topic 5.2: 
Tools for 

energy efficient 

SW design 

Rejuvenation 

technologies 

Design for 
extending 
lifetime 

 

Digital twins that support 

green deal and enable 

sustainability (e.g. contain 

power models) 

Topic 5.3: 

Energy aware 

frameworks & 

libraries 

Support 

monitoring/ 

reporting energy 

production / 

energy profiles 

Support scale-

able 

processing 

depending on 

available 

energy 

Energy-optimal 

distributed computation 

Topic 5.4: 

Management 

of 

computation 

power on 

embedded 

HW 

SW/HW support 

for energy 

awareness of 

embedded 

systems 

Support for 

embedded 

HPC 

 



 

Topic 5.5: 

Composable 

efficient 

abstraction 

Enabling 

technologies for 

the second life of 

(legacy) cyber-

physical systems 

Establish 

relationships 

between 

power 

consumption 

and other 

quality 

properties 

 

Major Challenge 

6: 

Software 

reliability and 

trust 

Topic 6.1: 

Reliability of 

software and 

new 

hardware 

Code coverage of 

reliability tooling 

and porting 

Simulation- and 

mock-up- based 

approaches for 

handling 

concurrency 

Embed 

reliability on 

software 

architecture 

level 

Use of quantum 

computing 

IoT digital twin simulation 

Validation and 

verification through 

simulation- and mock-up- 

based approaches for 

handling concurrency 

Topic 6.2: 

Robustness 

(trustworthy, 

secure, safe, 

privacy- 

aware) 

Trustworthy, 

secure, safe, 

privacy-aware 

Testing self-

adapting systems 

using simulation 

Define a 
maturity model 
for robustness 

of embedded 

software and 

beyond 

 

Topic 6.3: 

Security and 

privacy as a 

service 

Design for security 

and privacy as a 

service 

Architecture 

for security and 

privacy as a 

service 

 

Major Challenge 

7: Hardware 

virtualization for 

efficient SW 

engineering 

Topic 7.1: 

development 

methods and 

frameworks 

for hardware 

abstractions 

Modular building 

blocks available 

for creating 

abstraction layers 

for common 

multicore-

CPU/SoC 

platforms 

Design 

automation 

for abstraction 

layers built 

from formal 

HW 

description 

Methodology and tools 

automating abstraction 

layer design, providing 

certain guarantees 

(safety, security, 

determinism etc.) 

Topic 7.2: 

validation of 

application 

frameworks 

Support 

virtualized V&V 

of applications 

on abstraction 

layers for wide 

range of target 

systems and 

variants thereof 

Automated 

validation of 

properties like 

safety, 

security and 

runtime 

determinism 

 

Topic 7.3: Highly Hardware Hardware abstraction 



 

Run-time 

environments 

for safety-

critical 

applications 

performant & 

analyse-able run-

time 

environments 

supporting 

shared memory 

access control 

abstraction 

frameworks fit 

to be certified 

for safety-

critical 

domains 

(automotive, 

aeronautics,…) 

frameworks fit for 

certification in highly 

safety-critical 

applications (e.g. ASIL-D 

in automotive) 

 
 


